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Abstract – There are two major and often competing objectives in template matching algorithms, the balance between the speed at which a template can be matched in a given image and the accuracy in terms of pose, size and robustness to occlusion of the template as compared with the object in the image.  To these ends, the authors investigate different approaches that seek to mitigate these different effects to varying degrees.  The authors first investigate an algorithm for template matching that is invariant to both changes in rotational orientation and scale of the object. It is empirically shown that the algorithm is more efficient than more common template matching algorithms.  The template matching technique will be investigated with various types of corrupted data.  The algorithm will be compared with other techniques including traditional template matching.

    Furthermore, the authors investigate an approach that seeks to lessen the template search time in images where the uncertainties of object rotation and size have been eliminated.  Without explicitly investigating the robust performance of the algorithm, it has been shown that this technique can be used in robust matching scenarios.
1.  Introduction

    Template matching is a common technique used to discern objects in an image scene [1].  Rudimentary forms of template matching often fail because of the necessity to have the template and the object in the scene to be observed at the same size and rotation.  Brute-force algorithms can attempt to circumvent this deficiency by rotating and rescaling the image at multiple sizes and re-perform the template matching techniques (usually a sum of square distances--SSD or sum of absolute differences--SAD) to find the template size/rotation with the smallest distance measure in the image.  Another major difficulty for template matching algorithms is that caused by occlusion.  The SSD/SAD distance measures tend to heavily penalize occluded points resulting in poor detections but operate quickly and are straightforward and tractable in the mathematical description of their behavior.  Despite their problems, each is still extensively used today.

    The first algorithm we investigate was detailed in a rough form on the web in previous years.  We refer to is as Circular Template Correlation [2].  To our knowledge, no formal paper was written that presents the algorithm and the implementation we present is based on the rough framework presented.   We present a rigorous description of the algorithm with our embellishments and perform an analytical analysis upon it.

     The approach differs from traditional template matching in that we do not measure the entire template against the image for each step in the convolution.  Instead, we extract a circular subset of the template and image and form 1D ‘signals’.  These signals are then correlated with each other and the maximum of this operation is assigned as the output.  This technique provides us with a determination of the target’s rotation in the scene.  To provide scale invariance, we modify the scale of the circle used in extraction.  Thus, we must perform matching over different radii (scales).  However, the perceived reduction in computational time should be significant when compared to standard template matching techniques.  This is because our first step contains the rotational information that would normally be gained by a “brute force” rotation of the template by a certain amount and then applying that template at each location in the scene and determining the closest distance measure.

    We compare the computational efficiency of this circular template correlation technique against that of a brute force deformable template method.  The brute force method correlates against all variations by modifying the template (in rotation and scale) each time the correlation is conducted.

    We also investigate an algorithm proposed by Chen, Hung and Fuh, called the Fast Block Matching Algorithm Based on the Winner-Update Strategy [3] that seeks to reduce search time by pruning candidate areas in the scene when searching for objects with known size and rotation.  The application here, as first presented, is in image sequence compression where fast block matching is required.  We investigate this algorithm because it is the foundation of other algorithms, such as those proposed by Chen, Chen and Chen in “Fast Algorithm for Robust Template Matching with M-Estimators” [4] that use this setup for robust template matching measures as opposed to the SAD measure used in the Chen, Hung, and Fuh paper.  However, due to space, time and our smaller group-size constraints, we cannot adequately investigate the Chen, Chen, Chen paper.  

2.   Algorithm Details
2.1 Circular Template Correlation [2]

    The circular template correlation method works by subsampling the image and template in a circular pattern about a point.  This creates a 1D ‘signal’ for both the template and image.  Then, these signals are correlated and the maximum result selected for the correlation coefficient at the point on the output image.  Only one signal for a specific radius is generated for the template.  However, signals are generated convolution style around all points in the image with a correlation done for each point ‘signal’.  For a given radius, this gives us rotation invariance.  This technique is shown in Figure 1.

   For scale invariance, multiple radii are used.  To speed this process up, we initially generate all signals for the template corresponding to each scale, or radii, we wish to examine.   Thus, we have a G x R matrix where G is the granularity or number of pixels/cycle and R is the number of radii we are examining.  Each row of the matrix represents a signal at a particular scale.   The same method is done in a convolving manner for the image.  The time it takes to perform these operations is known as the signal creation time.   This technique is beneficial because the image ‘signals’ only need to be generated once and multiple template ‘signals’ can then be correlated against this set.  The time it takes to perform the correlation using all template signal against the image signals is known as the correlation time.  We distinguish between these two times as there exists clever methods of creating the image and template signals, which we do not discuss here.  In addition, if a new template is chosen to be matched, the image signal do not need to be regenerated.  Despite this separation of times, the circular template correlation method computation outperforms the brute force deformable template method.

    This method is sufficient in generating a small number of candidate matches from a large parameter set.  A Sum of Squared Differences is used as the similarity metric during cross correlation.
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Figure 1.  Demonstrating the circular template correlation algorithm.

2.2 Brute Force Correlation

    The brute force correlation method involves doing standard image, template correlation over all possible scales and rotations of the template.  This method will serve as a baseline by which to compare the circular template correlation technique.

    A Sum of Squared Differences is used as the similarity metric during cross correlation.

2.3  Fast Template Matching 

    In this section, we investigate the use of fast block matching methods.  Speed is always of the utmost importance when implementing template matching algorithms, and especially so when the realm of use of template matching systems is moved beyond typical computer vision environments.  In contrast with the previous method, there are scenarios when pose and size differences between the template and the image are not of great importance.  One typical example is in video compression, where correlations between same-size and pose blocks across temporally different frames is of interest.  In these scenarios, template matching algorithms seek to prune the search region rather than create the best possible match in terms of scale and rotational variations.

    The method we have implemented is proposed by Chen, Hung and Fu in [3].  The template matching task as outlined in [3] is in the realm of video compression.  In video compression, the goal is to find temporal matches between blocks in a video sequence for a certain number of frames [5].  The starting frame becomes the anchor point from which the templates are defined.  In the series of frames following, if many of the blocks do not change in their information (such as in surveillance video as studied in our project) then there can be a significant amount of savings in the storage requirements for the coding of the video stream.

    The strategy proposed in [3] is presented first in the context of a card game.  The goal of the game is to have the minimal total sum of cars in hand at the end of the hand.  A brute force method would require each person turn over all their cards and sum them all and then the person with the least wins.  However, in [3] the so-called “Winner Update” strategy is presented.  Instead of everyone flipping over all of their cards, everyone first turns over only one.  The person with the lowest one then flips over their next card.  The person who follows after this is the person with the lowest current sum.  This continues until one person has overturned all of their cards.  Even with random shuffling of the deck, it is intuitively straightforward to see how this strategy would reduce the amount of summations needed to be done by the group.  

    In the same manner, the authors proposed a method to do this when matching images.  The idea is to have at each round, a lower bound on the value of the actual sum of absolute differences.  The question arises is how to manipulate the images in a manner that is efficient that allows for the same type of strategy as used in the illustrative card game.  Also, like the card game, we would like to find the global minimum of SAD, giving rise to the best possible matching location (without any rotational, size, or occlusion requirements).  The following paragraphs and equations show how this is possible in the SAD setting.  The authors have also used the foundation for this task in more robust matching schemes, where distance measures take into account occlusion [4].  Due to space and time limitations, we present the foundation in this paper.

    The paper, and our analysis, assumes square blocks of size 2K where K is a positive integer.  As a result, lower bounds on the SAD between a template block and an image block located at (u,v).  The lower bounds are constructed in such a way that:
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The lower the index of the lower bound, the fewer the computations required to compute it.  These lower bounds are computed by:
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Where Tl is the Template Level Image at level l and Il is the Image Template Level Image at level l.  The variables u,v index the location in the image and x,y index in the template.  The different levels of images are defined in the following recursive manner:
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  If these calculations are performed at each location as the lower bounds are updated, their overhead would effectively negate the gains made by using the winner update strategy.  However, the authors show that there is a lot of redundant data that can be combined before employing the winner update algorithm.  Instead of computing the successive lower bounds at each step, the authors build what they term “Block Sum Pyramids” at the outset, computing the full resolution different level images for the for the entire image rather than on a pixel by pixel basis as needed. There are a total of K images in total.  

    Figure 2 depicts Block Sum Pyramids of a campus scene and how the various levels of the pyramid are constructed.  Each are full resolution (minus the border effects on the bottom and right edges).  Images other than the top level of the pyramid (the original image) are re-normed so that they fit in the typical grayscale image range.
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(a) Level 3 Image
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(b) Level 2 Image
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(c) Level 1 Image
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(d)Level 0 Image


Figure 2.   Block Sum Pyramids of a campus scene show how the various levels of the pyramid are constructed.

    It can be seen that as the levels go higher in the pyramids that there is a loss of information at the borders, which is one drawback of this approach, however with relatively small block sizes this is a negligible consequence.

  Once the Block Sum Pyramids have been calculated, the winner update strategy can be employed by indexing different pixel locations of the block sum pyramids and performing the SAD between template and search image at a particular location as in equation (2).  

  The concept of the block sum pyramids when attempting to do fast block matching is most intuitive when presented with the SAD as a metric to determine the difference between blocks.  However, if the blocks are constructed in different manners such that they satisfy other lower bound requirements for more robust error measures, it is shown in [4] that the BSP and modified forms of the winner update algorithm can still be used.

3.  Evaluation

    In evaluation of each algorithm, we will use real images and synthetically create the templates.  In the analysis of noisy environments, the image will be artificially degraded with noise.  

    We compare the results of the circular template correlation method by evaluating its ability to find correct candidate detections in location, size, and rotation of the target in the presence of additive Gaussian noise. We also evaluate the computational efficiency of this method against the brute force method.  

    For the evaluation of the Fast Block Matching Algorithm, we compare the efficacy of the algorithm when compared with a pure brute force SAD matching algorithm.
4.   Results

    The circular template correlator was run against an aerial satellite image of Pittsburgh, PA (courtesy of Google Maps, http://maps.google.com).  A particular building was extracted from the image and used as a template.  The template was modified by: scaling 1.56x and rotating it CW 226 degrees.  Gaussian noise was added to the image before correlation (SNR = ~26dB).  Results are shown in Table 1.

   The image results are shown in Appendix A and B.  To summarize, the correlator generated seventeen candidates as possible template locations, one for each radii.  As shown, one of the candidates included the correct position, rotation, and scaling of our template.

    We used the following equation to calculate SNR:
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Where SP and NP represent the signal and noise power respectively.  We assumed the image SNR in the absence of noise was infinite.

	Template 

	Dimensions
	113x113x1

	Scale
	1.56x

	Rotation
	226 Degrees CW

	Interpolation
	Bilinear

	Image

	Dimensions
	360x145x1

	Noise
	Additive Gaussian,

Mean = 0, Sigma = 0.1

	SNR
	25.45 dB

	Circular Template Correlation

	No. Scales Examined
	17 (2-18 pixel radii)

	Granularity
	128 pixels/cycle

	‘Signal’ Creation Time
	49.60 seconds

	Correlation Time
	132.7 seconds

	Candidate Detections

	Radius [pixels]
	Scale

[x]
	Angle [deg]
	Confidence

[0, 1]

	2
	0.20
	106.87 
	0.986747

	3
	0.30
	98.43  
	0.985929

	4
	0.40
	95.62  
	0.985770

	5
	0.50
	95.62   
	0.985645

	6
	0.60
	95.62   
	0.984976

	7
	0.70
	92.81  
	0.984045

	8
	0.80
	95.62   
	0.983043

	9
	0.90
	95.62  
	0.982283

	10
	1.00
	196.87   
	0.981721

	11
	1.10
	225.00   
	0.982965

	12
	1.20
	225.00   
	0.985771

	13
	1.30
	225.00   
	0.983109

	14
	1.40
	230.62 
	0.979980

	15
	1.50
	227.81   
	0.989321

	16
	1.60
	227.81   
	0.988264

	17
	1.70
	227.81  
	0.980809

	18
	1.80
	225.00   
	0.974695


Table 1.   Results of circular template correlation method against additive Gaussian noise.  Notice two suitable candidate detections were generated for radii of 15 and 16 pixels.

   Next, we ran the brute force correlation method using the same inputs.  The results are shown in Table 2.  The effective correlation time for the circular template correlation was ~130 seconds.  The effective correlation time for the brute force method was ~615 seconds.  The speedup is ~4.7.  The brute force method also generated 2176 candidate matches.   Thus, one must sift through all these matches to find an acceptable match.  The circular template correlation yielded only seventeen, but that set of seventeen is guaranteed to have a correct match. 

	Image

	Dimensions
	360x145x1

	Noise
	Additive Gaussian,

Mean = 0, Sigma = 0.1

	SNR
	25.45 dB

	Brute Force Correlation

	No. Scales Examined
	17

(2-18 pixel radii)

	Granularity
	128 pixels/cycle

	‘Signal’ Creation Time
	N/A

	Correlation Time
	616.6 seconds


Table 2.   Runtime performance of the brute force deformable template method.
    To obtain an estimate of how the algorithm scales, both methods were run against a larger image using the previous template. Results are displayed in Table 3, Table 4, and Figure 1.

    The effective correlation time for circular template correlation was ~810 seconds and for brute force ~2610.   The speed up is ~3.22.  Memory contention issues in our Matlab implementation may bias this estimate.  The FFT size also plays a critical role in the algorithm’s performance [6].  An optimized C implementation warrants further analysis.

	Image

	Dimensions
	661x422x1

	Noise
	Additive Gaussian

Mean = 0, Sigma = 0.1

	SNR
	30.677491 dB

	Circular Template Correlation

	No. Scales Examined
	17 (2-18 pixel radii)

	Granularity
	128 pixels/cycle

	‘Signal’ Creation Time
	308.1 seconds

	Correlation Time
	807.4 seconds

	Candidate Detections

	Radius [pixels]
	Scale

[x]
	Angle [deg]
	Confidence

[0, 1]

	2
	0.20
	123.75 
	0.988982

	3
	0.30
	317.81  
	0.990221

	4
	0.40
	317.81  
	0.990345

	5
	0.50
	317.81   
	0.990171

	6
	0.60
	317.81  
	0.989918

	7
	0.70
	135.00  
	0.989815

	8
	0.80
	135.00  
	0.990551

	9
	0.90
	135.00  
	0.991251

	10
	1.00
	137.81   
	0.991568

	11
	1.10
	143.43   
	0.991580

	12
	1.20
	329.06   
	0.990784

	13
	1.30
	323.43   
	0.987103

	14
	1.40
	227.81   
	0.979548

	15
	1.50
	230.62  
	0.984701

	16
	1.60
	227.81  
	0.982034

	17
	1.70
	225.00  
	0.976126

	18
	1.80
	227.81   
	0.971926


Table 3.    Results of running the circular template correlation method against a larger image.
	Image

	Dimensions
	661x422x1

	Noise
	Additive Gaussian

Mean = 0, Sigma = 0.1

	SNR
	30.677491 dB

	Brute Force Correlation

	No. Scales Examined
	17

(2-18 pixel radii)

	Granularity
	128 pixels/cycle

	Template ‘Signal’ Creation Time
	N/A

	Correlation Time
	2,608.6 seconds


Table 4.  Results of running the circular template correlation method against a larger image.
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Figure 3. (a)  The larger image used in the scalability tests.  (b) A candidate detection from (a) in the prescence of addtive Gaussian noise.

    We also evaluated the algorithm against salt and pepper noise (SNR = ~23dB) using the larger image and found it finds a correct candidate.  Figure 4 displays one of the candidate detections (radius = 15).

	[image: image12.png]





Figure 4.  The circular template correlation method evaluated against and image with salt and pepper noise (SNR = ~23dB).  As shown, it is able to find a correct candidate.

    Due to time constraints for the project, the authors implemented all algorithms in MATLAB.  While MATLAB allows for rapid implementation of algorithms, it is far from optimal in terms of speed.  These considerations are especially noticeable when MATLAB performs any sort of looping procedure.  In fact, it is good MATLAB programming practice to avoid loops whenever possible.  As such, we did not see noticeable speedups when implementing the fast template matching algorithm as compared to the standard algorithm.  This is primarily due to the fact that to implement the fast block matching algorithm it is necessary to implement some sort of  “while” loop structure.  In more efficient languages, this would not constitute significant overhead.  The other concern of the fast block matching technique is the search for the current minimum lower bound.  

    The data structures available in MATLAB, cell arrays and numerical arrays, do not lead to particularly efficient determination of the current lower bound.  The authors who present the technique devote some of their paper to more efficient data structures to deal with this problem.  

    To benchmark the efficacy of this strategy, we decided to count the amount of adds needed to compute different SADs.  We performed the analysis on different grayscale avi image sequences, and used different block sizes and search region sizes for each image.  We define a search region as the number of pixels in each direction (up/down, left/right) from the location of a block in an anchor frame.  Table 5 presents the results.

	Block Size
	Search Region
	Fast Algo. Adds
	Normal Algo. Adds
	Percent Savings

	‘hub0_60.avi’   320x240 pixels 60 Frames 

	16
	32
	247688592
	1.323e10
	0.0189

	32
	32
	236964180
	1.192e10
	0.0199

	16
	64
	415939284
	4.252e10
	0.0097

	32
	64
	433941676
	3.721e10
	0.0117

	‘corner.avi’   352x240 pixels  50 Frames

	16
	32
	131321340
	1.103e10
	0.0119

	32
	32
	196606916
	1.113e10
	0.0177

	16
	64
	163194688
	3.58e+10
	0.0045

	32
	64
	335979132
	3.522e10
	0.0010


Table 5.  Computational savings of Normal “Brute Force” method vs. “Winner Update” Method

5.  Discussion

    The circular template algorithm works well for defining a small set of candidate matches of a large parameter set.  We show here this method is quite effective for determining candidate matches with accurate scale and rotation estimates.  

    This algorithm demonstrated much speedup when compared to a brute force method.  Additionally, the authors feel a C implementation of the circular correlation algorithm would run much faster than its Matlab counterpart.  In fact, we believe this method warrants further investigation in a distributed computing environment using high performance blade servers such as those containing Itanium, Opteron, or equivalent processors.  On such hardware, the circular template algorithm can be tailored for optimal FFT performance using libraries such as FFTW [6].

    In the worst case, if the brute force method the and circular template method have identical runtimes, the amount of candidate to test for a suitable match is greatly minimized.

    Some of the performance issues associated with the fast template matching algorithm have already been presented.  In addition to these there is one other requirement for this method which we feel is notable but not so detrimental as to render it impractical.  The block sum pyramids will necessarily need more memory than a typical image.  However, in today’s computers, we feel that even the doubling of memory required for a particular image is not too large a price to pay for the speedups this method promises.

6.  Conclusion

    We investigate different approaches that seek to mitigate template matching under changes in scale and rotation.  We first investigate an algorithm for template matching that is invariant to both changes in rotational orientation and scale of the object. We demonstrate empirically that the algorithm is more efficient than the tradition brute force deformable template method even in the presence of Gaussian noise.  

    Secondly, we show that there can be significant performance gains when applying traditional block matching techniques if the use of successive lower bounds on the matching error is used.  These results can be extended to not only the sum of absolute differences but also the sum of square differences and more robust error measurements.
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Appendix A

This appendix contains the correlation confidence images for each scale.  Darker values represent higher confidence.
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Appendix B

This appendix contains the most likely candidate from each correlation confidence image in Appendix A.

	Original Template
	Rotated & Scaled Template
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