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ABSTRACT 

 The following paper develops the theories and methods used in a gesture recognition 

system implemented as a human-computer interface (HCI).  The gesture recognition system 

recognizes four fundamental static hand gestures and variations for a total of nine gestures.  The 

system uses a variation of the CAMSHIFT algorithm for hand tracking and a minimum distance 

classifier for classification.  The Win32 API is utilized to perform the desired actions, which are 

determined by a microstate/macrostate architecture by which contextual information is used to 

correct any falsities in single frame classification.  The state oriented model uses order statistics 

to provide corrections.  The software, named MTrack, is implemented using Borland Delphi 7.0 

and DirectX and is specifically designed for low-end desktop hardware.  E.g. A 600MHz 

Pentium with commercial off the shelf (COTS) camera hardware. 
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1.0 INTRODUCTION 

 This paper introduces the motivation, theory, implementation, and applications for a hand 

gesture tracking and translations system.  Furthermore, system architecture and implementation 

details are presented.  The algorithms, implemented in Borland Delphi 7.0, are explained in a 

manner independent of any programming language.  The goal of the explanations is to allow any 

programmer to understand the algorithms to a degree that allows implementation of them in any 

language, including C, C++, and Java.  However, the implementation of the translation of hand 

gestures to mouse actions will focus on the interface of the Win32 Application Programming 

Interface (API). The concepts will be explained in such a way to allow adaptation to any 

operating system including Linux.  Partial source code for the software is provided in the 

appendix along with a CD containing a demonstration. 

 The software, named MTrack, is designed to run in any Microsoft Windows environment 

featuring compatibility with the Win32 API and supporting DirectX 9.0.  It can be interfaced 

with most Universal Serial Bus (USB) camera devices including the popular Logitech 

QuickCam.  The software was designed to run on a 600 megahertz (MHz) Pentium a minimum 

frame processing of fifteen frames per second (FPS). 

 This paper introduces the utility, desires, and sample implementations of a gesture 

recognition system in chapter one.  Chapter two describes the motivations and theory behind 

common recognition and classification algorithms pertinent to this experiment.  Chapter three 

outlines the implementation details needed to construct the gesture recognition software created 

for this paper.  Analysis of the software along with sample execution is described in chapter four.  

Finally, chapter five concludes the research and is followed by the appendix containing the 

algorithms used in implemenation. 
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1.1 Utility of a Gesture Recognition System 

The need for a gesture recognition system (GRS) has been very prevalent over the past 

decade[1][2] [3] [4].  Many different problems have found their solutions in gesture recognition.  

More so, many unique applications have arisen from this technology.  Some of these 

technologies include: interfaces for smart classrooms [2] and even vehicle interaction [3].  These 

systems have gone so far as to even develop easy to use interfaces for non-technical users to 

utilize [4]. 

The need for a perceptual human computer interface has been around for some time now.  

With the onset of computer encounters and interactions becoming more prevalent in our daily 

life, the need for an intuitive interface to interact with a computer has increased.  Ultimately, 

computer scientists work towards harmonizing our lives with our digital surroundings. 

Hand gestures are a common way humans communicate with others in a harmonious and 

informal way.  Humans continuously communicate with their hands whether it is to show 

outward feelings such as disgust or to motion for input from others.  Despite the clear 

interpretation most hand gestures have to humans, gestures are mainly an informal means of 

communication based heavily on context.  Many different versions of a wave can say “Hello.”  A 

single gesture can also have different meanings across cultures. 

The interpretation of many hand gestures is purely contextual.  For example, the same 

waving hand motion for “Hello” may also mean “Goodbye.”  How does one deal with such 

differences?  Though many differences may be found in gesture subtleties, many gestures put 

into another context can be reinterpreted differently.  The idea of a computer accurately 

interpreting gestures solely on movement alone is difficult.  Thus, contextual information plays 

an important role in gesture classification. 
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Many human computer interaction systems involving gestures rely on context for 

classification.  Many systems predict the context of the user by issuing the interpretation of a 

specific gesture with a predefined meaning.  Thus, the user cannot make just any motion to give 

a command to the computer.  These systems prove most efficient and reliable. 

Recently, researchers at Penn State [5] have developed a computer kiosk using gesture 

recognition to help the visitors find their way around campus.  Other projects include American 

Sign Language recognition [6] and the use of the hand as a pointing device similar to a laser 

pointer [7].  Someday, we may find signaling a traffic light at a crosswalk no longer involves 

pushing a button, but instead, making a motion.   

With computer processing power increasing, the ability to sort and discriminate data 

improves.  This improvement aids the image processing / computer vision community as the 

complexity of a software can increase and thus provide superior processing.  Some of these 

improvements may lead to longer image processing pipelines including features such as dynamic 

image filtering and sophisticated tracking methods. 

 

1.2 Past Experiments 

Many different gesture recognition systems have been implemented over the years.  This 

section, presents a survey of gesture recognition systems found useful and highlights their 

significance.  Later, an overview is provided of each system and its theoretical framework. 

The movie Minority Report1 has inspired the creation of many gesture recognition systems.  

For a synopsis, the movie features actor Tom Cruise using a pair of “special gloves” by which he 

                                                 
1 The movie Minority Report trademarked and copyrighted 2002 by Twentieth Century Fox and 
Dreamworks, LLC. All rights reserved. Property of Fox. 
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is able to interface with a futuristic computer.  Mr. Cruise uses the gloves to manipulate data 

streams of images and movies.  The fluency of the special effects depicted in the movies is 

particularly smooth and very believable given today’s technology. 

One such Hollywood inspired gesture recognition system is the Mouse WebCam created by 

E. Garcia and L. Morentin [8].  Their system uses color to track the hand; specifically, a green 

kitchen mitt for which the application is tuned to use.  The system is written in Visual Basic.  It 

uses edge detection to perform the hand extraction from the background and then uses first and 

second order moment analysis to classify gestures to form three specific mouse actions: left 

button down, right button down, and no button down.  The authors also point out details in the 

movie stating Tom Cruise’s glove is black and contains three blue diodes.  As expected, the 

authors also point out that “[their system] is actually more difficult [to implement than] Tom 

Cruise’s gadget, as detecting [bright blue] lights is easier than detecting colors.” 

Many gesture recognition systems are used as pointing devices.  The system presented by 

Cantzler and Hoile [7] is an example of this.  Their system is designed to replace conventional 

2D pointing devices like those such as touchpads, trackballs, and mice.  Because of its design, it 

can work with any visible screened device.  The system uses low cost camera hardware to shoot 

a display, a monitor, find the center of the display, and then implement a pointing device against 

the scene.  Their claim is that the system works as if the user is controlling the mouse with a 

laser pointer. 

The third system to be examined is a mobile robot tracking system by Pylkkö [9]. This 

system uses color to extract an object from a scene.  This system pays special attention to 

computational complexity as it is implemented for robotic use where resources are limited.  The 

author goes on to develop a notion of color judges, which are used to help achieving real-time 
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performance.  These color judges also make the system highly configurable for many different 

tasks.  The author shies away from pixel based noise reduction schemes because of their 

computational cost.  Instead, markers are used as an interface between the tracking system and 

robot control.  The system has the ability to track many different objects simultaneously. 

An interesting way to interpret American Sign Language (ASL) is developed by Wysoski, et 

al [10].  The authors use histograms based on hand postures for gesture classification.  Their 

algorithm achieves the property of rotation invariance, which is much desired in gesture 

recognition.  The images are preprocessed by a color filter combined with mathematical 

morphology.  Boundary chord size histograms based on Peripheral Direction Contributivity 

(PDC) are used for feature extraction.  Several methods were used for classification including a 

multilayer perceptron neural network. 

A paper by Triesch and von der Malsburg [11] uses elastic graph matching for recognition.  

The system works well against complex backgrounds (86.2% success rate).  More so, the system 

works with gray scale images and uses no color information.  The graphs for classification are 

formed by local image descriptors, called jets.  The jets are based on a wavelet transform along 

with complex Gabor-based kernels.  As mentioned by the authors, it is believed Gabor filtering 

resembles methods of perception used by humans.  Despite their lack of color analysis, the 

system is able to work against complex backgrounds. 

Another ASL recognizer system was implemented by Starner, Weaver, and Pentland [6].  In 

their paper, they investigate ASL recognition with two different camera positions: hat mounted 

and desktop.  This review only covers their unique cap mounted system.  Both of their systems 

implement a Hidden Markov Models [12] (HMM) for classification.  Forty ASL words are able 

to be recognized with their system.    Their system uses hand color and eight-way connectivity 
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for broad hand extraction.  Second order moment analysis is used, along with some tricks, to 

assemble a sixteen element feature vector.  Along with the use of HMM’s as a classifier, the 

system yields high accuracy rates by also including contextual information by using lexicons to 

form complete sentences. 

The last experiment covered is by Guo. et al. [3].  The authors feature a recognition system 

used for human-vehicle control.  They use a neural network for hand segmentation and use 

invariant moments for gesture classification.  They also implement a method to separate the hand 

from the forearm based on the circularity of the palm.  As an example, their system is able to 

perform turn left, turn right, move forward, move backward, move, and stop. 

 

1.3 System Requirements 

A good gesture recognition system must be adaptable to change.  As previously mentioned, 

gestures are heavily dependent on context for proper interpretation.  It is often a good idea to 

predefine gestures and their interpretation.  With this information given to the user, the system 

has a priori knowledge of the context and gestures are correctly interpreted and safely executed. 

For this project, the following attributes are desired of a gesture recognition system: 

a) Insensitivity to changes in scene illumination [1]: the system must respond the same way 

to different lighting conditions including transient ones. 

b) Gesture recognition must be performed in real time: gestures must be processed at a time 

of 0.067 seconds or shorter.  This translates to a video frame rate of approximately fifteen 

frames per second or better. 
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c) Distinguish many gestures accurately: the classifier must be able to accurately distinguish 

a specific gesture from another across different hand shapes, colors, and deformations 

such as rotation and scaling. 

d) Accurately track and recover during loss or occlusion: the system should recognize when 

no hands are present in the scene.  It must track the desired object in a scene with many 

distractions including other hands or faces (flesh colored objects). 

e) Intuitive gesture to action translation: the gestures recognized by the system must be able 

to be reasonably performed by the user without causing fatigue or discomfort with 

extended use.  The gestures should be natural and intuitive to the function they describe.  

Transitions between commonly invoked functions should be natural and comfortable. 

Guo, et al. [3] present a very concise framework of requirements.  In their paper, they 

desire a gesture recognition system working in different environments including both indoors 

and outdoors.  They conclude that a gesture recognition system should include the following 

properties (quoted directly from source): 

a) Dynamic background: The vehicle faces a complex background with a variety of 

scenarios. A hand gesture recognition system that only works in the uniform and 

static background may not be flexible enough for outdoor application. 

b) Variable lighting condition: In the outdoor and dynamic environment, lighting 

conditions are uncontrolled. The hand gesture recognition system is required to 

have the adaptability for variations of lighting condition. 

c) Real-time interaction: It is essential that vehicle could recognize human hand 

gestures in real time. Slow system response is unsafe and not convenient for 

users.   
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d) Come as you are: For hand gesture recognition, it is desirable that recognition 

system is user & device independent, so that different users are able to operate it 

without wearing special devices (e.g. data gloves, colored markers, special sleeves 

etc.). 

e) Natural tendencies: In hand gesture recognition, it is suggested that human’s 

natural intuitive gestures be selected as prototype gestures, which are easy for 

public users to learn. 

 

1.4 Implementation Overview 

This section provides an overview of the requirements used to implement MTrack.  This 

section will lead to the notion of execution whereby actions conducted by the user are interpreted 

and dispatched to the operating system as mouse commands.  Thus, when execution is not 

desired, a computer can interpret a gesture, display the interpretation, but execute no mouse 

movement or other mouse actions. 

MTrack was created to run on Microsoft Windows 32 bit operating systems with DirectX 9.0 

or higher installed.  The software was created using the Borland Delphi 7.0 development 

environment.  The DSPack [14] library was used to access DirectX functions such as video 

capture and play.  A matrix library from the JEDI Math [15] group was also utilized to provide 

ease when completing matrix calculations. 

Most algorithms in MTrack were designed using Mathworks [16] MATLAB.  After 

qualifying, algorithms were then ported to Object Pascal for use. 

 The gesture recognition system is able to recognize four fundamental static [1] hand 

gestures.  These are: 
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• Open hand open fingers 

• Open hand closed fingers 

• Fist 

• Exclusive extension of the index finger (the simple pointing gesture) 

The variations of these gestures are formed by rotation of the hand. 

 The fundamental gestures are translated to computer actions.  The gestures translate as 

follows: 

• Open hand open fingers translates to mouse up.  A mouse button is considered to exist in 

two states, up or down.  When the user presses a mouse button, that button is considered 

to be in the down state. 

• Open hand closed fingers translates to mouse down. 

• A fist translates to active window minimization. 

• Index finger extension translates to cycling windows through the Z plane (ALT-TAB). 

• Gesture rotation translates to middle mouse button scrolling. 

Note that for the fist, an action performed from rotation does no really make sense corresponding 

to the action of the fist and therefore the rotational data is ignored.  It is also not physically 

comfortable to rotate the fist accurately over long periods of time.  With this in mind, the 

translation schema was chosen for maximum hand and arm comfort. 

The gesture recognition system is composed mainly of two subsystems, the hand 

extractor/tracker and the classifier.  The hand extractor focuses on segmenting a human hand 

from the video stream.  It relies on the hand’s color, or hue, to determine its location in an image.  

The RGB (red, green blue) input image from the camera is converted to HSV (hue, saturation, 

value) space whereby the hand is then segmented from the rest of the image.  The user can 
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control parameters such as the hue and even help filter out errors in the hue plane due to very 

high or low saturation or value values.  During the segmentation process, a feature vector is 

generated which is passed along to a high-level classifier.  The high-level classifier function 

looks at the feature vectors and determines what the best course of action is for the mouse.  It 

uses a statistical filter to help detect and correct misclassified gestures if any should arise. 

Some of the functions available to the user are: 

• Ability to ignore pixels based on extreme values of saturation and value. 

• Adjustment of the height to width ratio of the hand. 

• Hand color (hue) thresholds. 

• Expansion of search window between continuous frames to track the continuity of the 

hand through time. 

The hand is then tracked through time using a variation of the CAMSHIFT algorithm.  

This algorithm uses an adaptation of the MEANSHIFT algorithm to track color objects based on 

a histogram of the desired object color.  CAMSHIFT is useful as it is computationally efficient 

and is very resistant to distracters such as a second hand or the face appearing in a scene.  This 

algorithm is used to construct binary images or blobs of the hand. 

 A feature vector is constructed from the binary images created during the CAMSHIFT 

algorithm.  First and second order invariant moments are the main methods used as a 

discriminant to construct a feature vector.  These moments are based upon normalized central 

moments and invariant from rotation, scale, and translation [17].  From these feature vectors, a 

minimum distance classifier is used in conjunction with a small database of template images to 

classify an unknown hand gesture.  The minimum distance classifier uses the Mahalanobis 
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distance as it’s distance metric.  This system has been proven to work in many other areas of 

recognition including optical character recognition [18] [19] [20] [21]. 

 Mouse action is not translated on a frame-by-frame basis.  A new framework is 

constructed for the actual decision making process using the notion of microstates and 

macrostates.  The method is similar to playing poker.  Each card (frame of video) in a hand by 

itself does not amount to much, but in the presence of other cards and the order of their arrival, 

one can conclude the best way to play the hand (the macrostate).  MTrack works similarly.  It 

constructs the macrostate (action to take) from microstates using order statistics.  This state 

architecture is designed to correct misclassifications by injecting contextual information into the 

data stream via filtering. 
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2.0 MOTIVATIONS AND THEORY 

 Since gesture recognition’s start by Myron W. Krueger during the mid seventies [3] many 

practical applications and theories have arisen.  Gesture recognition has adapted to many 

different forms from facial gestures [22] to complete bodily human action [23].  Since then, 

several more applications have arisen and created more of a need for this type of recognition 

system.  Today, a movement towards hand controlled vehicles [3] and kiosks [5] is prevalent. 

 

2.1 Theoretical Framework for Comparison 

 Generally speaking, a gesture recognition system is broken down into a few fundamental 

components.  These components are:  

1. Noise reduction system 

2. Object extraction engine 

3. Discriminant 

4. Classifier 

5. High level abstraction 

6. Action engine 

Each piece plays a key role in the systems that preclude and follow it in the pipeline.  Often, 

these systems are quite tightly intertwined and almost indistinguishable from one another.  A 

description of each component of the system follows next. 

 

Noise Reduction System 
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 Almost all mechanical or electrical systems are highly susceptible to noise or signal 

distortion.  This is very prevalent in most low end and low cost commercial off the shelf camera 

devices.  In the systems studied in this paper, camera noise was a problem.  This noise is usually 

caused by inconsistencies in the capture elements or noise added to the signal via wire 

transmission.  In any case, this noise is often salt and pepper flavored or some form of Gaussian.  

Worse off, the noise is not consistent, meaning it does not strictly follow the same distribution 

exclusively.  The distribution of noise can change under different lighting conditions or in the 

presence of infrared of ultraviolet light; in which case, the camera may flicker appearing to loose 

frames. 

 Very few systems reviewed in this paper attempted to remove noise in a general sense by 

means of Wiener filtering or kernel convolution such as averaging.  In some sense, these types of 

filters may drastically improve recognition and especially tracking.  A scene better suited for 

tracking could be formed by region segmentation using a split and merge algorithm.  Systems 

such as these are often not robust enough to be exclusively used for general use.  Therefore, in 

this particular application, image filtering was simply beyond the scope of the study. 

 

Object Extraction Engine 

 This is where the heart is of a gesture recognition system lies.  In most cases, the results 

of the feature extractor are only as good as the data given to it.  Many different types of hand 

extraction algorithms are used but they almost all involve color image analysis.  There are some 

that involve difference images [24] and even feature points [11].  

 The most common method used is extraction by color.  There are two types of 

methodologies used.  One assumes the tracking of human flesh.  The other assumes the user has 
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some type of glove or object attached to the hand.  The use of gloves brings up an interesting 

point about human flesh tracking.  Often, solid colored gloves are used to help the computer 

better isolate the hand from the background.  Gloves also provide a much more uniform color 

distribution of color across the hand thus, the acceptable color tolerances are smaller, making the 

hand easier to extract. 

 

Discriminant 

The discriminant separates most gesture recognition system designs from others.  Given a 

scene, the discriminant is the characteristic by which an attempt is made to separate data by 

similarity or dissimilarity.  A feature vector is created uniquely defining data with the properties 

of stability where by small changes in the data realize small, but predictable changes in the 

feature vector.  It is this property that allows for classification. 

Discriminant functions can be created in many ways. In the case of GRS’s, researchers 

have used Gabor filters [11], KLT trackers, graphs [11], moment analysis [18], and principal 

component analyses [26] to name a few.  Since the discriminant function is heavily dependent on 

the data coming from the object extraction function, the extraction function plays a large role in 

the choice of feature extractor.  For example, in the case where a hand is segmented into a binary 

image from a background, principal component [25] or moment analysis [6] is commonly used.  

In cases where color is not present, the use of Gabor based filter kernels [11] or KLT tracking is 

sometimes used. 
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Classifier 

The classifier is an essential part of a gesture recognition system (GRS).  The classifier is 

responsible for determining the class or type of a gesture.  In the case of GRS’s, the input of a 

classifier function is a feature vector describing an unknown gesture [26].  The output of the 

function is the class, or type, of gesture from which the feature vector was derived. 

Generally, a good discriminant separates feature vectors into mutually exclusive 

subspaces in feature space.  The classifier functions by creating a decision surface or manifold 

for each subspace by which to determine the class of an unknown gesture.  Sometimes these 

decision surfaces are generally unknown at runtime and the classifier must create them as data 

arrives.  This type of configuration is known as unsupervised learning.  In this project, the 

decision surfaces are formed before runtime and unknown feature vectors are measured against 

known data samples.  A gesture is classified with the class it is closest to in feature space.  This 

type of classifier is known as a minimum distance classifier.  Often, this type of classifier always 

returns an answer.  However, thresholds may be set to simply declare a gesture as unknown if it 

is too far from any known subspace. 

Many systems actually involve a number of different classifiers and other mechanisms to 

weights their results to reach a highly confident decision.  Examples of such systems are ones 

utilizing fuzzy logic of voting scheme for classification.  The use of neural networks with such 

fuzzy logic and voting schemes is often used as they have the ability to be trained and retrained.  

In these systems, if a particular classifier of a set does not work well in the given situation, its 

contribution to the decision is lowered accordingly. 
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High Level Abstractor 

The high level abstractor is the last step to correct any classifier errors.  Safety is of the 

utmost importance during this stage as this is the last step before executing an action.  This is 

important for many situations involving heavy machinery [3]. 

Classification on a frame-by-frame basis is not always reliable.  Often, it is desired to 

introduce contextual information about a scene into the final class assignment.  It is possible to 

correct frames which otherwise may result in misclassification by introducing high-level 

contextual information into the function.  In the case of ASL, contextual information can 

improve classification simply by studying the grammar formed by the user.  For instance, in an 

ASL recognition system the user forms a gesture falling into one of two classes.  One of the 

classes is for a verb and the other a noun.  By analyzing the sentence structure, a system can 

correctly interpret the gesture. 

 

Action Engine 

 This section actually performs the operation requested by the user.  This may be to move 

a vehicle, crane, or mouse pointer.  Safety mechanisms are often also employed here especially 

in the maneuvering of heavy machinery. 

 The action engine is likely the most implementation dependent stage of a GRS.  

Generally, there are few frameworks allowing for generic or inherited behaviors.  The execution 

of this stage is critical though to the user.  It is desired that the actions complete in a timely 

manner, most desirably being in real time.  Most GRS’s invoke operating system level API calls 

to accomplish their tasks for this reason. 
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Some systems may choose to provide feedback from hardware.  Such as the case with 

vehicle control, feedback from motors can aid classification or other stages of gesture 

recognition by their state. 

 

2.2 Overview of Theoretical Practices 

This section provides a mathematical synopsis of relevant theories to gesture recognition. 

 

Noise Reduction Systems 

 Noise reduction systems are not usually covered in gesture recognition studies.  Because 

of this, only a short overview will be provided.  Most noise begins at the camera and can 

sometimes be removed by adjusting the camera appropriately.  Each camera is different yielding 

no absolute way to remove all noise uniformly.  Based on an estimate of a camera’s point spread 

function (PSF), blur is often eliminated with generic filtering.  Other techniques for filtering 

involve thresholding and mathematical morphology. 

 Mathematical morphology is a way to analyze data by its shape.  More so, it can be used 

remove unwanted shapes or enhances others.  Mathematically speaking for binary images, 

morphology is the convolution of a binary mask across an image for which each pixel is of the 

output is determined by some function of the mask and the original image. 

Two fundamental operations of morphology are shown below [27]. 

A binary image X is represented by the set: 

}),(,1)(:{ 2ℜ∈=== yxzzfzX        (2.1) 

X is added (termed Minkowski addition) to binary image B as such: 
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  U
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bXBX
∈

=⊕         (2.2) 

B is subtracted from X (termed Minkowski subtraction) as such: 

  I
Bb

bXBX
∈

=⊕         (2.3) 

These fundamental operators, (1) and (2), are constructed to create the operations of erosion, 

dilation, opening, and closing. 

 Mathematical morphology often works well for most binary filtering situations.  

However, it often performs poorly with different or dynamic contexts.  For example, a system 

performs thresholding of an image to isolate a hand (See Figure 1).  It also notices that some of 

the hue values are incorrect and speckles or other appendages are visible on the hand.  To 

remove these aberrations, morphological opening is performed.  The mask, termed a structuring 

element, is created to be just bigger than the unwanted speckles.  This method works great when 

the hand is close to the camera.  All the digits are visible and the binary image clearly depicts the 

hand silhouette with no other noise.  However, when the user moves their hand further from the 

camera, the speckles are soon as large as the fingers.  This causes the fingers to be removed 

during the opening operation. 
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 A way to solve this problem is to use a smart or adaptive filter.  This filter can be based 

on: the distance the hand is from the camera, connected component analysis, or conditional 

dilation. 

Though these algorithms may work very well, they consume a lot of CPU cycles and are 

therefore not used with standard, low end PC hardware.  More so, noise reductions algorithms 

excel best when specialized hardware is designed for their use like associative memories and 

such.   

Such hardware is now available on desktop computers.  This allows these more complex 

morphological operations to perform efficiently.  An example of such hardware are the MMX 

extensions available on the Intel Pentium architecture.  These extensions contain instructions 

allowing for single instruction multiple data (SIMD) execution. 

 

ORIGINAL FILTERED 

 

 
 

Figure 1.  Two noisy hand gestures filtered via 
morphology.  Each image is eroded three times, 
opened, and then dilated three times.  A 3x3 mask 
was used in all operations. 
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Object Extraction Engine 

 The object extraction engine extracts the hand from the scene and also tracks it.  Almost 

all hand tracking algorithms examined use some sort of color extraction scheme.  The extracted 

color is often formed into a probability density function or in the case of MTrack, a binary 

image. 

Common ways to extract color information is by converting from RGB (red, green, blue) 

colorspace to HSV (hue, saturation, value) colorspace.  Most camera input is easily available to 

the user naturally through RGB or YUV (luminance and chrominance, component video) 

colorspace.  Thus, methods using these streams are preferred but however are often not the best 

choices for describing color as humans think of it, hue. 

HSV colorspace separates color into the humanistic terms of color, lack of color, and 

brightness.  This separation creates an easy to define subspace of acceptable ranges of color to 

track.  The RGB to HSV colorspace calculated conversion is as follows [28]: 
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Often, the saturation and value are used to remove pixels lacking color and those too 

bright or too dark.  As saturation and value reach their upper and lower bounds, the accuracy of 

the hue component decreases.  Due to the orientation of the HSV space, it is easy to define a 

subspace of acceptable ranges of saturation and value.  When this is done, pixels with a 

saturation and value below a predetermined limit are not considered part of the object of interest, 

even if their hue is acceptable.  Similarly, this is also done for pixels with too much color or 

brightness. 

There are many schemes for object extraction that do use RGB and others that do not 

even use color altogether.  MTrack chooses to track based on color partially due to the efficiency 

the HSV model has on the CAMSHIFT algorithm.  More advanced techniques including those 

involving Gabor filtering [11] and filter banks have been studied.  These techniques are more 

complicated than what is used in MTrack and can perform with the absence of color information. 

 CAMSHIFT (Continuously Adaptive MEANSHIFT) is a variation of the MEANSHIFT 

algorithm.  The MEANSHIFT algorithm is an algorithm, which simply climbs the peak of a 

probability density function given a specific constraint window.  This window is called the 

search window.  The MEANSHIFT works well for analysis of static distribution through time.  

However, it fails when the distributions change. 

 CAMSHIFT picks up where the MEANSHIFT fails.  CAMSHIFT adaptively modifies 

the search window each of frame until a steady state results and adjusts the window for the next 

frame.  By doing so, CAMSHIFT is able to track continuity of an object through time. 

 By its nature, CAMSHIFT is well suited for colored object tracking as long as the 

underlying probability distribution is “good enough.”  CAMSHIFT is also not very sensitive to 

noise or occlusions.  Thus, even if an object is occluded for an instant, CAMSHIFT is able to 
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quickly recover and lock on to the target.  The algorithm is fast and runs in )( 2nO α time and its 

parameters can be changed instantaneously.  The algorithms efficiencies and performance have 

been studied in detail in [13] [29]. 

 

Discriminant  

 The discriminant function’s purpose is to generate a unique vector for a given object.  A 

good discriminant function is well behaved in the fact that small variations in the input result in 

predictable and small variations in the output.  Thus, two objects with dissimilar features should 

have very different or even orthogonal feature vectors. 

 A classifier is really only as good as the discriminant used to generate its feature vector.  

This presents a unique problem for gesture recognition: gestures are never “perfect” in that they 

vary in scale and rotation to the camera.  Thus, a discriminant insensitive to these features is 

desirable [18]. 

 It is possible to construct a seven dimensional feature vector using normalized central 

moments, which is translation, rotation, and scale invariant [30].  This set of seven numbers with 

these characteristics are called the Hu invariant moments [17].  These moments are constructed 

from normalized centralized moments up to the third order [28].  Figure 2 depicts two images 

along with their seven Hu invariant moments. 

 The normalized central moments are constructed from the central moments through the 

following relationships: 
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 These moments are not strictly invariant for our discretized environment.  This results in 

slight variations of the feature vector in rotation, scaling, and even translation.  However, the 

variation is so small that does not affect classification greatly.  There are ways to help improve 

this error and one of them relies on the use of Greene’s Theorem [31].  Greene’s Theorem allows 

calculation of an integral by boundary information.  Similarly, this theorem is used with binary 

images and contour following algorithms to compute the data necessary for moment analysis 
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OPEN HAND, OPEN FINGERS OPEN HAND, CLOSED FINGERS 

 
=1φ 8.1142e-004 
=2φ 6.5596e-008 
=3φ 3.5793e-011 
=4φ 5.9157e-012 
=5φ -4.6247e-023 
=6φ 1.4187e-015 
=7φ 7.2604e-023 

 

 
=1φ 7.5239e-004 
=2φ 1.5620e-007 
=3φ 2.2224e-011 
=4φ 2.8286e-012 
=5φ 2.2298e-023 
=6φ 1.0771e-015 
=7φ -2.4073e-024 

Figure 2.  Two binary image representations of gestures and their associated Hu 
invariant moments. 

 
 In addition to the information given by the Hu invariant moments, the objects rotation 

can also be extracted.  It turns out the moment calculations can be directly used to calculate the 

rotation of the object, which is now a binary blob.  The equation to calculate rotation is given 

below. 
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Classifier 

The classifier assigns a feature vector to a class.  There are many ways to determine 

which class to assign to a feature vector.   
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The class of a feature vector can be determined by measuring it against sets of samples of 

which the class is known.  Several metrics can be used for measurement.  A common metric used 

is the Euclidian distance given by: 

222 )()()( yyxxxD ttt −+−=        (2.13) 

where: 

x is a classified feature vector. 

xt is an unclassified feature vector at time t. 

The Euclidian distance metric does not work well for all data.  Most data separates but 

does so in a way by which the subspace forms in a characteristic manner.  This could be a linear 

or exponential dependence for example.  To account for this characteristic variance the 

Mahalanobis distance metric is often used. 

 The Mahalanobis distance metric takes into account information about a class’ variance 

in the feature space.  Thus, any vector following the trend is measured as being close to the 

sample space.  Vectors orthogonal to the vector space are measured as far from the sample space. 
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Figure 3.  A plot of data points of a known class.  The circle and ellipse represent the 
distance metrics of the Euclidian and Mahalanobis distance respectively.  Every point on 
each of the respective lines is considered the same distance from the centroid marked 
with an X. 
 

 

As shown in Figure 3, any point along the lines is the same distance from the X.  From 

the figure, we can see for the Euclidian distance, the red line, feature vectors orthogonal to the 

“flow” of the known samples could be classified with the depicted class.  However, it is easily 

seen that an orthogonal data point would simply not be a part of the current data trend.  It is easy 

to see how the Mahalanobis distance, the blue line in Figure 3, compensates for the “flow” of 

data and would continue to properly classify feature vectors following this trend. 

 The Mahalanobis distance [32] is defined by the following equation: 

)()()( 12 ′−−= − mxSmxxD ttt       (2.14) 

where: 

xt is a feature vector of unknown class at time t 

m is the mean vector of the sample vectors 

S is the covariance matrix of the sample vectors 



 27

The values calculated from the sample space can be quickly computed.  Thus, when a feature 

vector of an unknown class is classified, it can become part of the sample space and used to 

classify future feature vectors.  With a large enough number of samples, a defined class subspace 

and decision surface forms thus improving classification. 

 

High Level Abstraction 

This section of the architecture is often not presented independently in many recognition 

systems.  This system is often integrated into the classification scheme and not formally defined.  

However, such a formality is used here and its use described in detail. 

The high-level abstraction function is the last component data visits before going to the 

action engine.  It is one of the last times software can detect and correct any misclassifications.  

In concern of safety, this section plays a critical role.  In the case where a gesture recognition 

system can control heavy machinery such as a car, safety is of concern.  A misclassification 

could result in injury or death.  It is often desired then to place limits on the capabilities of the 

system or the execution order. 

The high-level abstraction engine provides this contextual information to correct for 

misclassifications.  In MTrack, this is implemented using order statistics to help filter out false 

alarms.  The concept of collating feature vectors and classifications independent of each other 

and providing contextual information to them forms the microstate/macrostate architecture. 

Microstates are made up of data independent of other microstates and time.  The 

microstates are then assembled to form a macrostate, which provides a general description of a 

system.  The macrostate engine may look at the order which microstates arrive, the number of 
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identical macrostates, etc.  The important concept is that high-level information is injected into 

the classification scheme to correct for errors. 

 

Action Engine 

The action engine is responsible for providing feedback to the user to reinforce their 

gestures.  This is often implemented directly through the operating system.  This provides the 

most control over the desired actions.  This method also provides the least response time without 

directly interfacing with hardware. 

The Win32 API is a framework used to manipulate a users desktop.  The API provides 

many convenient functions desirable for a human computer interface with gesture.  Some of 

these functions are given in Table 1. 

FUNCTION ACTION 
Move_Event( ) Mouse and wheel movement, mouse button 

action. 
GetForgroundWindow( ) Provides access mechanism to the current 

foreground window. 
GetWindowLong ( ) Provides characteristics of a window such as its 

display state. 
SetForegroundWindow ( ) Bring a window to the foreground. 

Table 1.  Some common functions from the Win32 API used to create a users 
desktop experience. 

 

2.3 Requirement Analysis 

To this point, the theories and methods used to implement a gesture recognition system 

have been presented.  A set of fundament requirements for a gesture recognition system must 

now be specified.  
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Guo, et al. [3] describe goals for an ideal gesture recognition system.  MTrack is able to 

meet these system requirements by the following methods: 

1. Track and distinguish hand gestures by skin color alone.  Thus, moderate illumination 

changes do not effect the software. 

2. Utilizes optimized algorithms and little memory to process and classify a scene in under 

0.067 seconds. 

3. A minimum distance classifier that is translation, rotation, and scale invariant provides 

robust gesture classification. 

4. A variation of the CAMSHIFT [13] algorithm is used to reliable track and separate a 

particular hand in a scene. 

5. Gestures utilized provide little fatigue and are fairly intuitive to the user. 

 

2.4 Justification of Selected Methodologies 

In this section, the theoretical underpinnings utilized in MTrack are described. 

 There exists signal filters and/or processor algorithms well suited for removing noise 

from video.  However, these algorithms are often computationally intensive and are often not 

robust enough to handle dynamic contexts.  Morphological operators are great for filtering, but 

often have the same downfall as frequency based filters such as the Wiener filter; but can be 

computationally expensive. 

 Based on the analysis performed, there is no frequency or morphological based filter with 

real time performance specification that stands out as an optimal filter to use for gesture 

recognition.  Because of this, it was chosen to not implement an initial noise recognition stage as 

part of MTrack. 
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MTrack solely relies on the user to properly adjust the camera parameters correctly to 

achieve the best image.  Many different types of imaging sensors are used in digital video 

cameras.  The two main types are CCD and CMOS arrays [29].  The tuning of video equipment 

is left to the users discretion.  It is assumed they know their equipment best.  Additionally, a 

filter can be programmed and inserted into a video stream’s filter graph.  The filter can be loaded 

by the operating system at run-time and filter video in real time. 

A variation of CAMSHIFT is used for object extraction and tracking.  CAMSHIFT is 

robust and provides a generally good extraction based on color.  CAMSHIFT is very fast 

allowing room for more complex features like noise reduction or feature extractors to be 

implemented yielding real time performance globally. 

CAMSHIFT relies so heavily on color making global illumination and color models 

important.  The use of the HSV colorspace allows an acceptable color subspace to be easily 

described and implemented.  Mainly, simple thresholds on each dimension are all that are needed 

to realize a great track.  Other color models often used with this algorithm are normalized RGB 

also known as chromacity space [33]. 

Colorspace is sensitive to the light used to illuminate a scene.  CAMSHIFT does not take 

into account relative color differences to form an absolute color scale.  MTrack performs no 

color constancy computations. 

 The discriminant function is often the most complex part of the recognition system.  Hu 

invariant moment [24] [17] analysis was chosen to assemble feature vectors.  Hu moments are 

rotational, scale, and translation invariant.  The output of the object extractor, a variation of 

CAMSHIFT, is a binary ‘blob’ and moment analysis works best for such types of input.  In fact, 

results computed during the CAMSHIFT algorithm are used to determine Hu moments.  
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Not all the Hu moment generated are necessary in classifications.  Often, the lower order 

moments alone server as a sufficient classifier.  This is true for this system.  The lower order 

moments proved to be insensitive to noise [34] [35] and robust enough to classify well.  The 

higher order moments were found to be sensitive to noise and detrimental to classification. 

 After creating a series of test images, which were outputs of the CAMSHIFT algorithm, a 

proper classifier was selected.  It was noticed that all the gesture classes had similar 

characteristics where by each feature space spread elliptically over the subspace.   Few outliers 

resulted from the discriminant analysis.  Adjacent classes, which may cause confusion, were 

orthogonal to each other. 

 The data often fit an elliptical manifold.  Therefore, it was decided to use the 

Mahalanobis distance as the classifying means for an unknown vector.  This allowed outliers 

following in the trend of a class to be correctly classified.  The use of simple norms, such as the 

Euclidian norm, yields unsatisfactory results.  A shortcoming of the Mahalanobis distance as a 

metric is it must be trained. 

 In order to handle some of the outliers that resulted, high-level abstractions were 

analyzed.  The abstraction used slightly resembles models used in statistical physics, but has 

little relation.  The model is called the microstate/macrostate model.  Essentially, each frame is 

assigned a microstate, which is derived from itself and only itself.  Then, these microstates are 

fed into a macrostate engine where future classification is conducted. 

 The macrostate is another opportunity to help filter out false classifications.  It uses 

contextual information to do so, mainly gesture continuity.  The macrostate engine uses order 

statistics to correct these falsities. 
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 Finally, the Win32 API was used to execute the classification results.  The API gives a 

very close handle on the desktop environment and executes in a timely manner.  The framework 

is portable across Windows systems (ME, 98, 2000, XP) such that MTrack can run on any of 

these operating systems and a user can manipulate the environment uniformly. 
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3.0 IMPLEMENTATION 

The overall architecture of MTrack is now presented.  The system consists of a six-stage 

process.  It starts by taking a video stream input and finishes by transforming it into desktop 

actions as dictated by the user.  Each stage is presented in detail. 

3.1 System Architecture 

The system architecture is composed of a six-stage process (Figure 4).  

RGB to HSV
Conversion

Image Thresholding
(pdf)

Feature Vector
Generator

CAMSHIFT

Microstate
Assignment

Action Engine

Macrostate
Assignment Win32 API

From
Filter Graph

Display to User

Training
Data

User
Parameters

Figure 4.  A diagram of MTrack’s six-stage architecture. 

The process begins by constructing a filter graph acquiring a video stream using DirectX.  The 

filter graph used is depicted in Figure 5. 

 

VideoSourceFilter Smart
Tee TheSampleGrabber Color Space

Converter Raw Video

 

Figure 5.  The filter graph of MTrack.  The Color Space Converter filter is not the 
RGB to HSV converter. 

 

The video is broken down into frames.  Each frame is passed into the gesture recognition system 

(GRS) to be interpreted. 
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Stage 1 – Colorspace Conversion 

 Figure 6 depicts the RBG to HSV conversion function.  Each frame is stored in a word 

aligned structure contain the red, green, and blue color components.  The frame is processed 

pixel-by-pixel converting each RGB frame to HSV colorspace.  The image is stored in the same 

memory space as the RGB image maintaining the word alignment for processing speed. 

 Each pixel of RGB is one byte-worth of color data.  Thus, each color, red, green, and 

blue, has a range of [0, 255].  Since the same memory space containing the RGB image is used to 

store the HSV image, the HSV values also have the same domain.  This may seem strange 

because the hue component naturally has a domain of [0, 360] degrees, a cycle around the 

colorwheel.  This value is normalized to a range of [0, 255].  This results in a slight loss of color 

granularity, but none significantly affecting the recognition process.   

RGB to HSV
Conversion

Video
Stream
(RGB)

Video
Stream
(HSV)

 

Figure 6. RGB to HSV Conversion. 

 

Stage 2 – Image Thresholding (pdf construction) 

 Thresholding is performed on each HSV frame (Figure 7).  Using the user-adjustable 

parameters of hue, saturation, and value bounds, pixels are converted to two colors, black or 

white.  If a pixel is deemed to be part of the desired object, it is converted to white, otherwise, it 

is converted to black. 

 Thresholding forms a binary image blob.  This blob is viewed as a probability density 

function by the CAMSHIFT algorithm.  Typically, CAMSHIFT assigns probabilities based on a 
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look up table generated from a histogram.  In this case, all pixels are of equal probability.  This 

shifts the focus to not only obtaining a track, but to creating a silhouette of the object.  This 

shape is used in the next stage where a discriminant function will operate upon it. 

Image Thresholding
(pdf)

Video
Stream
(HSV)

Video
Stream
(Binary)

From CAMSHIFT
(search window)

User Adjustable
Parameters

 
 
Figure 7.  Threshold function. 
 

 
Stage 3 – CAMSHIFT and Feature Vector Generation 

During this stage, the output of the thresholding function is simultaneously used (not in 

parallel) to create a feature vector and track the object.  As it turns out, some of the calculations 

used in CAMSHIFT can be used to create the feature vector.  Thus, CAMSHIFT runs first in the 

sequence. 

CAMSHIFT works by performing the MEANSHIFT among a search window while 

continually modifying this window.  This search window is local to the object.  Thus, it prevents 

distracters from being tracked.  The MEANSHIFT algorithm repeatedly runs updating the 

centroid each time.  The algorithm halts when the centroid has reached a steady state defined by 

the user-adjustable tracker parameters.  CAMSHIFT then resizes the search window by a user-

adjustable amount, which becomes the initial search window at the start of the next frame. 

The feature vector is generated after CAMSHIFT completes.  Lower order moments are 

used to compute the centroid during each iteration of CAMSHIFT.  During these iterations, this 

information is also used to compute higher order moments. 
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The feature vector also contains rotational information about the object.  This information 

is also derived from the computations from CAMSHIFT.  An object’s rotation is computed after 

the Hu invariant moments are computed.  The Hu invariant moments along with the object’s 

rotation are stored in a feature vector, which in this case is called a microstate. 

 

Stage 4 - Microstate Assignment 

 The microstate is created from the Hu invariant moments and the object’s rotation.  It is 

also at this time the minimum distance classifier assignes the feature vector to a preliminary 

class.  All of this information is stored in a structure composing the microstate. 

 

Stages 5 and 6 - Action Engine 

 The action engine is composed to two parts: macrostate assignment and execution.  The 

macrostate determines the actions to be executed by the software.  Execution of the decision 

follows using the Win32 API. 

 The macrostate and microstate are similar as they both describe an action of the user.  

The macrostate differs by containing high level, contextual, information about not just one 

frame, but several.  This information aids in correcting any misclassifications should they arise. 

 The action engine has a three-frame microstate buffer.  It contains the microstates for the 

last three frames of video in order of arrival.  The macrostate is computed by examination of the 

buffer and nonlinear filtering. 

The macrostate is computed by examination of the buffer.  If all three microstates states 

in the buffer are identical, the microstate’s gesture classification becomes the macrostate.  This is 

denoted through order statistics as: 
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 )3()1( XX =          (3.1) 

where: 

 )1(X  denotes the first order statistic of X. 

)3(X  denotes the thrid order statistic of X. 

The macrostate does not change if the contents of the buffer are not identical.  The 

effectiveness of this filter does generally rely on the effectiveness of classification at microstate 

assignment.  However, upon inspection of the microstate stream, this filter aids in stability by 

removing outliers in a local window of the stream.  As the gesture changes, what appears to be 

an outlier, in one scenario, begins to dominate the buffer and thus the macrostate changes. 

Potentially, the microstate stream could be thoroughly analyzed and a more exact filter be 

constructed for macrostate determination.  Probabilities of filter effectiveness can be constructed 

[27].  For example, consider a noisy microstate stream xi given by 

 ii zcx +=          (3.2) 

  where: 

c is constant representing the ideal gesture in some interval 

in time. 

zi is uniformly distributed noise over [0, 1]. 

The noise cumulative density function (cdf) is given by 
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Using a three-point window, a 3rd order-statistic filter is applied to xi.  This filter is described as 

  )3(Xyi =          (3.4) 
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where the window of points used at index is i is 

  },,{ 11 +− iii xxx          (3.5) 

The cdf of F3(x) can be computed from the general equation Fr(x) 
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  where: 

n is the size of the filter’s window. 

F(x) is the noise cdf. 

From these equations, it also possible to calculate the minimum and maximum values of the filter 

output.  This information could be used to restrict specific gestures from executing based on 

context. 

As the macrostate is computed, the Win32 API is called to execute the decided actions.  It 

is at this time, rotation information is used to manipulate the middle-mouse-button scroll.  The 

action, along with the scrolling information, is sent back to the GUI where it is displayed to the 

user. 

 

3.2 Implementation Details 

The algorithms used in MTrack were first designed using MATLAB.  Upon verification 

of the algorithms, they were then ported to Object Pascal.  MATLAB provided an effective 

means by which to quickly design and test possible algorithms to be used by MTrack. 

 MTrack was developed on a standard desktop machine.  The machine is a 600Mhz 

Pentium processor with 512 megabytes of RAM.  The development environment, Borland 

Delphi 7.0, operated in Windows 2000 environment.  The main camera used for testing was a 
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Logitech Quickcam Pro USB utilizing software version 5.4.1.  A DirectX wrapper, named 

DSPack, designed for use in Delphi was used.  Its version is 2.31 with a patch provided by: Paul 

Glagla2. 

The sample space to calculate the Mahalanobis distance was defined by recording a video 

of the known gesture for five seconds.  During this time, the gesture was moved towards the 

camera, away form the camera, and then rotated ninety degrees in each direction.  Twenty-five 

frames were selected from each video to be used as ground truth.  Figure 8 depicts the feature 

vectors created for ground truth. 
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Figure 8.  1st and 2nd order moment plots of the four 
fundamental gestures. 

 
 Source code for algorithms is provided in Appendix B. 

                                                 
2 
http://www.progdigy.com/boards/index.php?act=ST&f=1&t=1340&hl=christmas+gift&s=5c6d37d66d2ed18f1d54ff
da5b2f9f09 
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4.0 ANALYSIS 

This section provides analysis of the usability of MTrack as human-computer interface 

software.  It describes the capabilities of the system, provides screenshots of sample execution, 

and provides directions for future improvements. 

 

4.1 System Capabilities 

Video 

MTrack supports any camera interface that can be recognized and processed by a filter 

graph through Microsoft’s DirectX framework.  It includes easy selection of video source if 

many cameras are connected to a system.  It also provides support for loading video files of the 

correct size for repeatable analysis. 

MTrack features two video displays, one is the raw stream from the camera, the other is 

the rendered stream upon which recognition is conducted.  By right clicking on the rendered 

video stream window, one can take a screenshot of the current frame and save it to bitmap, 

switch between different views including RGB, hue, and the binary image, and turn the on screen 

display on or off.  Figure 9 depicts the four fundamental hand gestures and their associated 

binary image. 

 

Hand Extraction and Tracking 

MTrack supports numerous tracking features that can be tuned for better recognition and 

tracking performance.  This includes hue thresholds, saturation thresholds, value thresholds, 

height to width ratio of hand, mean threshold, window expansion size for the CAMSHIFT 
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algorithms and the area the window must be greater than before the system declares that the track 

was lost.  Optionally, theses parameters can be stored and recalled in a .mtk file which uses XML 

format to store these parameters for different environment profiles. 

RGB IMAGE BINARY IMAGE 

 

 

 

 

Figure 9.  The four fundamental gestures and their 
associated back projections.  These binary images 
are interpreted as pdf’s by CAMSHIFT and are 
used to generate feature vectors. 

 
Translation can be turned on or off.  When translation is turned on, a large stop button is 

displayed for easy system shutoff (Figure 10).  MTrack always remains the top window in the Z-
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order in Window thus making it always visible to the user.  It has a large display showing the 

current mouse action and the display turns read when the track goes out of the video window to 

denote that the track may no be correct as the hand is not fully in the scene. 

Table 2 depicts the gestures and translations supported by MTrack.  These set of  

GESTURE ACTION 
Open hand, spread fingers, little 
rotation 

Mouse up 

Open hand, closed fingers, little 
rotation 

Mouse down 

Index finger extended ALT-TAB, more specifically, 
iterating through the z-order. 

Fist Minimize current window 
Open hand, spread fingers, rotation 
<-25, >25 degrees 

Mouse up, middle mouse button 
scroll down. 

Open hand, closed fingers, rotation 
<-25, >25 degrees 

Mouse down, middle mouse button 
scroll down. 

Index finger extended ALT-TAB with middle button scroll 
Index finger extended ALT-TAB with middle button scroll 
Hand movement Direct translation to mouse 

movement 
 
Table 2.  The complete set of gestures and their associated actions as 
supported by MTrack. 

 
fundamental gestures can be used to perform other computer tasks such as: 

• Double clicking 

• Click and drag 

• Selection 
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Figure 10.  The Stop button.  This button allows the user to 
easily turn off the translator. 

 

MTrack does not currently support features such as resolution change, multi-hand tracks, and a 

training program.  However, the software was created in such a way that these features can be 

added with ease. 

 

4.2 Sample Execution 

Figure 11 below depicts the six prominent gestures and their translations.  The red box in 

the figure is the search window determined by CAMSHIFT.  The lower left-hand corner denotes 

the frames per second of the video stream.  The text at the top center of the image denotes the 

action interpreted by the system.  The underscore and caret denote scroll down and scroll up, 

respectively. 
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Figure 11.  Six gestures captures from the Rendered Video Display.  The red 
box denotes the tracked object.  The top, centered text denotes the action.  Fps 
is an abbreviation for frames per second. 

 
Each frame of video is decomposed from RGB to HSV colorspace and then a binary 

image is created (Figure 12).  This binary is created by thresholding using the user adjustable 

parameters.  This forms a binary ‘blob’ or pdf as it is viewed by CAMSHIFT. 

RGB Hue (HSV) BINARY 

 
Figure 12.  A gesture shown as it is decomposed into a binary image. 
 
 

MTrack does not always classify correctly.  Usually, this is due to the hand being 

incorrectly extracted from the scene (Figure 13).  Because the system relies on color, if the user 

does not wear a wrist band or a long sleeved shift, the arm may be extracted also, thus, yielding 

an incorrect extraction.  Algorithms have been developed to correct such incorrect extractions. 
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BINARY RGB 

  
 
Figure 13.  False positive due to the arm being 
included during thresholding. 

 

 MTrack is able to recognize gestures despite translation, rotation, or scale invariance.  

This is due to the properties of the discriminant, the Hue invariant moments.  A sample of this 

property in use is depicted in Figure 14. 

  
 

 

Figure 14.  Five images of the same gesture displaying scale, rotation, and 
translation invariance.  Despite the noise in some of the images, the Hu 
invariant moments are focused on shape.  The 1st and 2nd order moments not 
very sensitive to noise. 
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4.3 Future Improvements and Direction 

Much can be done to improve the MTrack software.  Limits on the amount of 

development time restricted the initial release’s supported features.  The development of features 

and improvement upon those that already exist could easy make for another thesis.  I will outline 

some of the improvements of interest to myself if given more time for the project. 

MTrack is multithreaded and currently has in place a generic system for hand tracking.  

The hand tracker class used in MTrack is inherited from a generic tracker class.  Thus, a 

programmer can inherit from this class and a user can seamlessly use the new tracker without 

modifying any code. 

More than one instance of the tracker class can be instantiated at one time.  Thus, two 

hands can be simultaneously tracked.  More so, the Window message passing system can be 

utilized to exchange messages between the two classes in an effort to coordinate their 

movements.  Such a procedure would allow for more complex actions by the user. 

Another such improvement to MTrack concerns the classifier.  A simple application or 

dialog can be constructed which asks the user to perform a different gesture in an effort to train 

the classifier.  Once the training has finished, the results could be stored in an XML file and 

recalled then at any time.  This allows different users to easily use MTrack without suffering 

classification problems. 

The classifier can also be improved by retraining itself in real time.  When the macrostate 

engine finds a misclassified frame, it can add the frame’s feature vector to the correct class and 

then retrain the space.  This will help tune the classifier quickly.  Again, the classifier’s 

parameters can also be saved to disk to be loaded again when needed. 
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Morphological filtering can be performed on the threasholded video stream.  This would 

help remove artifacts resulting from camera noise or a poorly tuned camera.  This also helps to 

give the binary hand blobs a more natural look better resembling the hand.  This then provides 

then better input to the classifier for improved classification. 

Thresholding can be improved by utilizing the concept of color constancy.  Currently, 

thresholding is done on relative color as changes in light can slightly affect the performance of 

this function.  Color constancy would be an effort to improve this and create a more robust 

thresholding function. 

Currently, a non-flesh colored wristband or long sleeve shirt must be worn to prevent the 

arm from interference with the hand thresholding.  A way to remove this has been studied [3] 

and could be implemented in MTrack (Figure 15).  This would eliminate the use for colored 

gloves, wrist bands, and other unnatural devices. 

FIST FIST 
OPEN HAND, 

CLOSED FINGERS 

Figure 15.  Two images of a fist but one has parts of the wrist in it.  This 
makes the fists appear similar to the open hand, closed fingers gesture. 

 

More gestures could be supported by MTrack.  The ability to detect numbers or hand 

curves could be implemented.  Instead of performing analysis on the whole hand, morphological 

skeletonization could be performed and then the resulting data put into graph form.  This graph 

could better describe hand gestures as it could closely resemble the mechanical framework 

contained in the hand to form the gesture. 
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5.0 CONCLUSION 

MTrack is a gesture recognition software developed to recognize simple gestures and 

perform a task from them in real-time.  The system is designed to run in Windows on a mid level 

desktop platform.  The system performs in real time using low-cost commercial off the shelf 

(COTS) camera equipment. 

MTrack is designed to recognize four fundamental gestures and variants to execute a total 

of nine actions.  The system responds the same to gesture rotation, scale, and translation.  This 

provides a natural interface for easy use. 

 MTrack uses a variant of the CAMSHIFT algorithm for object extraction and tracking.  

Using calculations from CAMSHIFT, the system is able to discriminate each frame through 

shape analysis via Hu invariant moments.  Each frame is then classified against a small sample 

set of known gestures through a minimum distance classifier.  Each frame is then passed into a 

high level filtering framework attempting to correct misclassifications.  The framework uses a 

notion of microstates and macrostates to utilize contextual information for filtering.  The final 

frame classification is an action executed via the Win32 API. 

 MTrack continually provides feedback to the user.  Gestures can be interpreted, but not 

executed, by the computer at a user’s wish.  The system also provides video displaying a track of 

the hand, the current gesture, and system performance. 

 Despite MTrack’s successful application, room for improvement exists.  Many 

methodologies exist for color tracking, discriminating, classifying, and execution.  These topics 

are often studied independently due to their complexity.  The software’s generic framework 

provides a plugable interface by with to experiment with these different methodologies. 
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APPENDIX A: SOFTWARE MANUAL 

This section describes how to use the MTrack software. 

 

A.1 Software Components 

MTrack is composed of three sections: menu (red area), video (blue area) and mouse 

action (red area). 

 

The menu provides an interface to the features of MTrack.  The Video frame provides output of 

two video streams, the Raw Video Stream coming from the camera and the Rendered Video 

Stream which contains tracking and gesture information.  The Rendered Video Stream window is 

also equipped with a popup menu, which allows for some additional features for analysis.  The 

Mouse Action frame has the current mouse action as interpreted by the system. 

A.2 Menu Options 

This section contains the majority of features offered by MTrack.  This section is 

organized by function starting with the File menu. 
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With the DirectX architecture, video is streamed from a source to an application by 

means of a filter graph.  This graph represents the filtering performed to convert a video stream 

from an arbitrary format to something usable by any application.  A filter graph consists of a 

series of nodes forming a directed unclyclic graph.  Each node has inputs and outputs and 

performs some function. 

 

The File Menu 

 

The File menu contains three options:  

1. Open Settings… – Opens an mtk file which contains parameters for the tracker as shown 

in the Tracker Settings window.  This window is available in the Configuration menu.  

Mtk files are stored in simple XML format. 

2. Save Settings… - Used to save tracker settings to an mtk file. 

3. Exit – Stop the current filter graph, deallocates program memory, and closes the software. 

 

The Tracker Menu 

 

This menu is used to enable translation of the interpreted hand gestures to mouse actions.  The 

Tracker menu has the following options: 

1. Start Tracking – When a video stream is active, this performs the actions denoted in the 

Mouse Actions frame. 

2. Stop Tracker – Discontinues translating the actions denoted in the Mouse Actions frame. 
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When translation is started, a large stop button is provided to the user to easily stop translation. 

 

The Configuration Menu 

 

The Configuration menu contains one option: 

1. Adjust Tracker Parameters… - Launches the Tracker Settings window, which allows real 

time adjustment of tracker parameters. 

The Tracker Settings contains performs the following functions: 

 

1. Hue Thresholds – Any pixel in an image with a hue value above the low threshold and 

below the high threshold becomes part of the back projection image.  All other values are 

rejected.  The system has no support for circular ranges such as those less than 10 and 

greater than 250 which is supported by a colorwheel. 

2. Height To Width Ratio - Governs the height to width ratio of the search window.  This 

allows for different shaped hands to be accurately tracked. 
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3. Mean Threshold – Denotes the maximum centroid movement in either the X or Y 

direction between MEANSHIFTS during CAMSHIFT.  A higher value usually 

corresponds to less iterations, faster processing, but worse tracking. 

4. Window Expansion – Denotes how many pixels in every direction (-X, X, -Y, Y) the 

search window is to be expanded during the CAMSHIFT algorithm.  A high number 

helps to track a fast object but is more susceptible to locking on to distracters in a scene. 

5. Saturation Thresholds – Used in conjunction with Hue Threshold in construction of a 

back project.  Any pixel below the low threshold and above the high threshold is rejected 

during thresholding.  This is used to filter out colorless objects from a scene. 

6. Value Thresholds – Same as the Saturation Threshold by concerning the value 

component of the HSV colorspace.  Saturation and value constraints help to remove dark 

and bright areas of a scene which often contain incorrect hue values which distract the 

tracker.  Much noise can be accurately removed with adjustment of these thresholds. 

7. Lose Track Area – If the area of the search window becomes less than this threshold, the 

tracker assumes the target is occluded or no longer in the scene. 

The Cancel button restores the Tracker Settings to their original values.  The OK button saves 

the current tracker settings. 

At any time when these parameters are changed, the tracker immediately implements 

their modifications. 

The tracker parameters are also stored in the Window registry upon exit and are reloaded 

when the software is started.  This is provided for convenience. 

 

The Source Menu 
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The Source menu contains three sections: 

1. Stop Video –Stops the processing of the video stream. 

2. File… - Allows selection of a video file and processes the video stream.  The video must 

be of size 160x120 pixels or the stream will not render correctly. 

3. Upon program startup, MTrack enumerates all camera devices and displays a list of them 

in this section.  Select a camera from this list to begin processing its stream.  The camera 

must support RGB 24-bit native output. 

 

The Help Menu 

 

The Help menu contains one option which is to display the About dialog. 

 

This dialog is a way to verify the version of MTrack you are using. 

 

The Rendered Video Stream Menu 
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This menu is displayed by right clicking on the Rendered Video Stream window.  The 

menu has threes sections.  The first section allows a user to save the current video frame to a 

bitmap file.  The option is designed to allow successive frame captures and automatically saves 

the frames in bitmap format with numerical naming.  The second section allows the user to view 

the video in different colorspaces, RGB, Hue from HSV, and the binary image generated from 

thresholding.  Finally, the last section provides and option to toggle the on screen display.  

 

 

The Mouse Action Frame 

The mouse action display will turn red in the instant the window falls outside of the scene.  This 

is to denote that the track may not be accurate as information may be missing. 
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APPENDIX B: ALGORITHMS USED IN IMPLEMENTATION 

During action execution, the mouse pointer is moved to follow the hand.  The mean 

centroid of the microstate buffer saved is also part of the macrostate.  This information is then 

translated to screen coordinates and then executed using 

mouse_event 
( 

MOUSEEVENTF_ABSOLUTE || MOUSEEVENTF_MOVE, 
Centroid.Y, 
Centroid.X, 
0, 
0 

) 
 

The middle-mouse-button is scrolled using 

mouse_event 
( 

MOUSEEVENTF_WHEEL, 
0, 
0, 
WHEEL_DELTA, 
0 

) 

The left middle mouse button is manipulated using 

mouse_event 
( 

MOUSEEVENTF_LEFTDOWN or MOUSEEVENTF_LEFTDOWN, 
Centroid.Y, 
Centroid.X, 
0, 
0 

) 

Sending a message to the foreground window minimizes it.  Note that Windows provides 

two ways to communicate a message through a window’s queue: SendMessage and 

PostMessage.  SendMessage returns only after the message sent has been executed.  This 

is desired for MTrack as it ensures the video processing does not proceed until the action is 

performed.  This is opposed to PostMessage which returns immediately leaving the target 

window to execute the message upon convenience. 
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Windows maintains an imaginary plan extending outward from the users screen.  This 

plane, called the Z-plane, contains information about the order of windows on the screen.  This 

order is known as the Z-order.  The Z-order is not simply the list of applications running when a 

user presses and holds ALT & TAB.  A full discussion of the Z-order is beyond the scope of this 

paper.  However, a generic algorithm is presented for implementation. 

Windows are cycled through the Z-order using the code below. 

LONG lStyle; 
LONG lCaptureWindowStyle; 
HWND hCaptureWindow = GetWindow(GetActiveWindow(), GW_HWNDFIRST); 
HWND hForegroundWindow = GetForegroundWindow(); 
 
while (hForegroundWindow <> 0) 
{ 

lStyle = GetWindowLong(hForegroundWindow, GWL_STYLE); 
if ( 

(lStyle and WS_VISIBLE) == WS_VISIBLE) 
&& 

 ((lStyle and WS_POPUP) <> WS_POPUP) 
   ) 
{ 

hCaptureWindow = hForegroundWindow; 
 lCaptureWindowStyle 

= 
GetWindowLong 

 ( 
  hCaptureWindow, 
  GWL_STYLE 
 ); 
} 
hForegroundWindow = GetNextWindow(hForegroundWindow, GW_HWNDNEXT); 

} 
SetForegroundWindow(hCaptureWindow); 

 

RBG to HSV Colorspace Conversion 

For each RGB pixel of an image, perform the following calculations [28]: 

1.  
[ ]

[ ] ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−−+−

−+−
= −

2/12

1

))(()(

)()(
2
1

cos
BGBRGR

BRGR
θ  



 61

2.  
GB
GB

H
>
≤

⎩
⎨
⎧

−
=

 if
  if

  
360 θ
θ

 

3.  ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

360
 255 HroundH  

4.  [ ]),,min(
)(

31 BGR
BGR

S
++

−=  

5.  )(
3
1 GBRI ++=  

 

Thresholding 

For each HSV pixel of an image perform, the following calculations to form output image I: 

1.  
                                                                       otherwise

range acceptable within all are ,, ingcorrespond if
  

0
255 VSH

I
⎩
⎨
⎧

=  

Note:  Each plane in the colorspace is stored as an 8-bit unsigned integer.  Thus, the 

range of each plane is [0, 255]. 

 

CAMSHIFT and Moments [13] 

Let I(x, y) be an HSV image. 

Let SearchWindow be a rectangle.  This object is saved between function calls (static). 

1.  While algorithm has not converged, perform the following calculations: 

2.  Create a new window, W, by expanding SearchWindow in every direction 

(+x, -x, +y, -y). 

3.  Perform Thresholding on image I(x, y) saving only data within W.  The output of this 

operation is stored in T(x, y). 

4.  For every pixel within W: 
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5.  ),(0000 yxTmm +=  

6.  ),(0101 yxTmm +=  

7.  ),(1010 yxTmm +=  

8.  End For Loop at 4. 

9.  OldCentroid = CurrentCentroid 

10.  CurrentCentroid.x = round(m10/m00) 

11.  CurrentCentroid.y = round(m01/m00) 

12.  WindowMultiplier = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

255
00mround  

13.  If NewCentroid is close enough to OldCentroid then algorithm converged. 

14.  End While Loop at 1. 

15.  Let all 0=µ . 

16.  For every pixel within W:   

17.  2
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23.  ).().)(,( 2
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24.  End For Loop at 16. 
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26.  Compute NewSearchWindow using NewSearchWindowAlgorithm. 

27.  SearchWindow = NewSearchWindow centered around CurrentCentroid. 
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NewSearchWindowAlgorithm 

Given SearchWindow and WindowMultiplier from the CAMSHIFT algorithm and the gesture 

rotation θ .  Given HeightToWidthRatio from user-adjustable parameters. 
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Microstate Classification 

1.  INFINITYD =min  

2.  Class = UNKNOWN 

3.  For each gesture class, c, given an unknown feature vector x: 

4.  D = MahalanobisDistance(x) 

5.  If  D < Dmin 

then 

6.  Dmin = D 

7.  Class = c 

8.  End If at 5. 

9.  End For Loop at 3. 

10.  MicrostateClassification = Class 

 

Macrostate Classification 

Let s be a FIFO list containing 3 elements, all microstates. 

Upon reception of a new microstate, add it to list s. 

1.  If s[0] = s[2] 

then 

2.  Macrostate = s[0].microstate 

else 

2. Macrostate is unchanged. 

4. End If at 1. 

 



 65

APPENDIX C: ACADEMIC VITA OF ISAAC GERG 
 
EDUCATION 

 The Pennsylvania State University, University Park, PA 
Major: Computer Engineering 
 

Advanced Digital Image Processing 
Computer Vision 
Numerical Analysis 
Data Structures and Algorithms 

Design of Digital Systems 
Signals & Systems  
Electronic Circuit Design 
Modern Physics 
Fluids and Thermodynamics 

Database Management Systems 
Operating Systems 
Computer Architecture 
Technical Writing 
Probability  

CLEARANCES 

 United States Department of Energy security clearance (Level L).                       May 02/03 – August 02/03 

COMPUTER SKILLS 

 C, C++, Java, Gdb, Microsoft Foundation Classes, MATLAB, VTK, Object Pascal (Borland Delphi), 
Win32 API, VHDL, MIPS   
       RISC Assembly, Windows Sockets, Visual Basic, QBASIC 4.5 
ASP, PHP, XML, PL/SQL, JSP, NetBeans, MySQL, Python, VBA, HTML 
Synopsis, PSPICE, Latex, Microsoft Office Package, ClearCase 
Windows, Linux (Mandrake, Debian, Suse), Solaris, FreeBSD, BeOS, DOS , Macintosh 
Adobe Photoshop, Macromedia Flash, extensive web & graphic design skills 

PROFESSIONAL EXPERIENCE 

5/04 – 8/04 The Pennsylvania State University, State College, PA  
Software Engineer – Image Processing / GIS  

• Developed a client / server software used to position probe and acquire ultrasonic 
images used for tomographic reconstruction of human tissues. 

• Invented and documented a Java suite to mimic Matlab image processing tools.  
The suite features dozens of functions including, but not limited to: mathematical 
morphology, split and merge, and correlation. 

• Verified and ported target recognition code from Matlab to Java. 
5/03 – 8/03 Bechtel Bettis Atomic Power Laboratory, West Mifflin, PA 

Summer Intern – Software Engineering Group 
• Acted as a member of a design team in Generic Instrumentation and Control 

Software Engineering.  
• Developed a computer software program that communicated directly with an 

embedded system. The program collected plant control data for use in 
calorimetric calibration. 

• Software engineering tools used were C++ language, Microsoft Foundation 
Classes, LabView, and embedded system test equipment. 

5/02 – 8/02 Bechtel Bettis Atomic Power Laboratory, West Mifflin, PA 
Summer Intern – Quality & Environmental Assurance Group 

• Provided analysis to support the issue of a technical information package 
describing the first canister of spent fuel loaded by the Naval Nuclear Propulsion 
Program.  Specific calculations included radionuclide inventory, decay heat 
levels, and mass of uranium, heavy metals, and fissile material. 

• Created a computer program that processed weather data from Naval Reactors 
sites.  This program provides a saving of three man weeks per application. It is 
estimated that the program will save one man-year of work. 
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12/01 – 1/02 Community Nurses of Elk & Cameron Counties, St. Marys, PA 
Internet Programmer 

• Created entire website and set up hosting, domain name, and email accounts 
(www.communitynurses.org). 

• Designed a professional style website with searching capabilities.  Implemented 
an elaborate dynamic content and update system via PHP and MySQL for use by 
non-technical personnel. 

6/01 – 8/01 Anderson & Kime Realty Services, St. Marys, PA 
Internet Programmer 

• Recreated entire website – www.andreson-kime.com 
• Designed and programmed an online real estate entry system. System allowed for 

non-technical users to dynamically upload property information to website in real 
time. 

• Created a database system with ASP and SQL, which allows website viewers to 
search or view real estate properties by categories such as price or location. 

 
6/00 – 8/00 SinterFire Inc., St. Marys, PA 

Press Operator 
• Operated many small moldings presses, which produced ammunition. 
• Computed, monitored, and maintained parts within a desired mass, density, and 

diameter range. 
 

RESEARCH EXPERIENCE 

9/01 – 12/01 Dr. Gary J. Weisel, Altoona, PA 
Research Assistant 

• Assisted in the conduction of a numerical simulation on the nuclear scattering of 
deuterons with hopes of better characterizing the strong nuclear force. 

• Edited and executed scripts, which computed uncertainty values for a Monte-
Carlo numerical simulation. 

• Installed CD-Burner and burning software on a Linux machine to create backups 
of data 

• Created user accounts and provided secure, remote access on a Linux system via 
SSH. 

 
LEADERSHIP EXPERIENCE 

5/03- 9/03 The 6th Annual Melissa Heydenreich 5k Moxie-Thon 
Race Director 

• Coordinated over 400 people in a 5k road race through Penn State, University 
Park. 

• Established over $2,500 for race sponsorship. 
• Realized over $7,300 in funds from participants. Funds donated to the Leukemia 

& Lymphoma Society. 
00 – Present Lion Ambassador Student Alumni Corps 

Various positions including: Moxie-Thon Ad-Hoc, IT Chairperson, Committee Secretary, 
& Historian 

• Responsible for serving as a liaison between prospective students and alumni. 
Guided over 150 families through a tour of University Park and Altoona 
campuses.  Over 70 hours of public speaking. 

• Coordinated campus and community events, which communicate University 
history and personality. 

• Unwavering life style of commitment to the Pennsylvania State University 
through tradition, excellence, and pride. 
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ACTIVITIES 

00 - Present Lion Ambassador Student Alumni Corps 
 Moxie-Thon Director, IT Chairperson, Committee Secretary, Historian, Source 
 Book Coauthor 

03 Tau Beta Pi – Engineering Honor Society 
01 - Present Lion Scout Student Recruitment Program – Visited high schools to recruit students for 

 Penn State. 
00 - 02 Altoona College Pep Band – Drumline Section Leader 
01 - 02 PSUnix - Founder & President of an organization for the support of the Unix/Linux 

operating systems 
01 - 02 L.I.F.E. House Resident – Non-Drinking, non-smoking lifestyle residence hall. 
01 Freshman Orientation Leader 
00 Alpha Lambda Delta – Freshman Honor Society 

AWARDS 
 Recipient of the Jerome J. Kapitanoff Memorial Scholarship 

Recipient of Who’s Who Among College Students (faculty/staff nominated) 
Golden Key Society - Top 15% of 2002 class at Penn State 

PUBLICATIONS 

 Software - Alphabetixe. PC Utilities Magazine 
(http://www.livepublishing.co.uk/content/pcutilities.shtml). Issue 26.  
 

 


